DM8

Ce devoir est à rendre pour le mardi 27 novembre à 8h00. Vous devez le réaliser par groupes de trois élèves. Chaque élève écrira son nom sur la partie qu'il a rédigée et on indiquera les trois noms sur la première page.

Toutes vos réponses doivent être soigneusement justifiées. Une attention particulière doit être portée à la rédaction de vos réponses. Encadrez vos réponses.

Exercice DM8.1

Dans tout l'exercice, on considère un ensemble E et deux parties A,B de E fixées. On définit l'application ϕ suivante :

$$\phi: \left\{ \begin{array}{ccc} \mathscr{P}(E) & \longrightarrow & \mathscr{P}(E) \\ X & \longmapsto & (A\cap X) \cup (B\cap (E\setminus X)) \end{array} \right.$$

- 1. Déterminer $\phi(\emptyset)$ et $\phi(E)$.
- 2. Dans cette question, on suppose que $B = E \setminus A$.
 - (a) Soit $X \in \mathcal{P}(E)$. Déterminer

$$A \cap \phi(X)$$
, $(E \setminus A) \cap (E \setminus \phi(X))$ puis $\phi(\phi(X))$.

(b) Montrer que ϕ est bijective et donner sa bijection réciproque.

On ne suppose plus que $B = E \setminus A$.

3. (a) Soit $X \in \mathcal{P}(E)$. Montrer que :

$$\phi(X) = \emptyset \iff B \subseteq X \subseteq (E \setminus A).$$

- (b) En déduire que si ϕ est surjective alors $B \subseteq (E \setminus A)$.
- 4. Dans cette question, on suppose que $B \subseteq (E \setminus A)$.
 - (a) On suppose que B et $(E \setminus A) \setminus B$ sont non vides; soit $b \in B$ et $x \in (E \setminus A) \setminus B$. Calculer

$$\phi(\{b\})$$
 et $\phi(\{b,x\})$.

- (b) Montrer que si ϕ est injective, alors $(E \setminus A) \subseteq B$.
- 5. Que peut-on déduire des questions précédentes?

Exercice DM8.2

On considère l'équation différentielle suivante sur $[0,\pi]$ (où la fonction inconnue est noté y et la variable x):

$$(\cos x)y' - y = \pi \tag{E}$$

- 1. Déterminer une primitive de la fonction $t \mapsto \frac{1}{1-t^2}$ sur un ensemble que l'on précisera.
- 2. Calculer les intégrales suivantes :

(a)
$$\int_0^t \frac{\mathrm{d}x}{\cos x}$$
 pour $t \in \left[0, \frac{\pi}{2}\right[$;

(b)
$$\int_{\pi}^{t} \frac{\mathrm{d}x}{\cos x}$$
 pour $t \in \left[\frac{\pi}{2}, \pi\right]$.

On pourra, dans les deux cas, poser $y = \sin x$.

- 3. Donner la solution générale de l'équation homogène associée à (E) sur $\left[0, \frac{\pi}{2}\right[$, puis faire de même sur $\left]\frac{\pi}{2}, \pi\right]$ (on désignera par deux lettres distinctes les constantes qui apparaissent dans chaque cas).
- 4. Déterminer une solution particulière simple de (E) sur $[0, \pi]$.
- 5. Donner toutes les solutions de (E) définie sur $[0, \pi]$.