Chapitre A7 : Équations dans $\mathbb C$

1 Fonctions polynomiales

Dans cette section, on rappelle rapidement la notion de fonction polynomiale et de racine. \mathbb{K} désignera l'ensemble \mathbb{R} ou \mathbb{C} .

Définition 1.1

Soit $n \in \mathbb{N}$.

i) Une fonction polynomiale à coefficients dans $\mathbb K$ de degré n est une fonction P définie sur $\mathbb K$ de la forme :

$$P: z \mapsto \sum_{k=0}^{n} a_k z^k = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$$

avec $(a_0, \ldots, a_n) \in \mathbb{K}^{n+1}$ et $a_n \neq 0$. Par convention, la fonction nulle est polynomiale de degré $-\infty$.

ii) Soit P une fonction polynomiale à coefficients dans \mathbb{K} et $\alpha \in \mathbb{C}$. On dit que α est une **racine** de P si $P(\alpha) = 0$.

On rappelle la formule de la somme géométrique et une extension de celle-ci.

Proposition 1.2

Soient $n \in \mathbb{N}$ et $z, a, b \in \mathbb{C}$. On a :

i)
$$z^n - 1 = (z - 1) \sum_{k=0}^{n-1} z^k$$
, ii) $\sin n \ge 1$, $a^n - b^n = (a - b) \sum_{k=0}^{n-1} a^k b^{n-1-k}$.

Exemple 1.3

Factoriser, pour $(a, b) \in \mathbb{C}^2$, $a^3 - b^3$ et $a^3 + b^3$.

Le résultat suivant permet de factoriser un polynôme lorsqu'on en connaît une racine.

Théorème 1.4

Soit P une fonction polynomiale à coefficients dans \mathbb{K} de degré n > 0 et $\alpha \in \mathbb{K}$. Si α est une racine de P, alors il existe une fonction polynomiale Q à coefficients dans \mathbb{K} de degré n-1 telle que :

$$\forall z \in \mathbb{K}, \ P(z) = (z - \alpha)Q(z).$$

2 Racines *n*-ièmes d'un complexe non nul

2 a) Racines de l'unité

Dans cette section, on considère un entier naturel non nul n.

Définition 2.1

On appelle racine n-ième de l'unité toute solution dans \mathbb{C} de l'équation $z^n=1$. On note alors \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité :

$$\mathbb{U}_n = \{ z \in \mathbb{C} \mid z^n = 1 \} .$$

Exemple 2.2

Déterminer \mathbb{U}_1 , \mathbb{U}_2 et \mathbb{U}_4 .

Remarque 2.3

On a les résultats suivants :

- i) $\mathbb{U}_n \subset \mathbb{U}$,
- ii) \mathbb{U}_n est stable par multiplication : $\forall (z, z') \in \mathbb{U}_n^2, \ zz' \in \mathbb{U}_n$,
- iii) \mathbb{U}_n est stable par passage à l'inverse et conjugaison : $\forall z \in \mathbb{U}_n, \ \frac{1}{z} = \overline{z} \in \mathbb{U}_n,$

Théorème 2.4

Soit $z \in \mathbb{C}$. On a:

$$i) \ z \in \mathbb{U}_n \iff \exists k \in \mathbb{Z}, \ z = e^{\frac{2ik\pi}{n}}$$

$$i) \ z \in \mathbb{U}_n \iff \exists k \in \mathbb{Z}, \ z = e^{\frac{2ik\pi}{n}}, \qquad \qquad ii) \ \mathbb{U}_n = \left\{ e^{\frac{2ik\pi}{n}} \middle| \ k \in \mathbb{Z} \right\}.$$

Exemple 2.5

Résoudre l'équation d'inconnue $z \in \mathbb{C}$: $z^3 = i$. On écrira les solutions sous forme algébrique et exponentielle.

Nous avons besoin du théorème de la division euclidienne pour démontrer le résultat qui suit.

Théorème 2.6 (Division euclidienne dans \mathbb{Z})

Soit $(a,b) \in \mathbb{Z}^2$ avec $b \neq 0$. Il existe un unique couple d'entiers $(q,r) \in \mathbb{Z}^2$ tel que :

- i) a = bq + r;

On dit alors que q est le quotient et r le reste de la division euclidienne de a par b.

Théorème 2.7

$$i) \ \mathbb{U}_n = \left\{ e^{\frac{2ik\pi}{n}} \middle| k \in \llbracket 0, n-1 \rrbracket \right\}.$$

- *ii*) Posons $\omega = e^{\frac{2i\pi}{n}}$. Alors : $\mathbb{U}_n = \left\{ \left. \omega^k \right| k \in [0, n-1] \right\}$.
- iii) \mathbb{U}_n contient exactement n éléments.

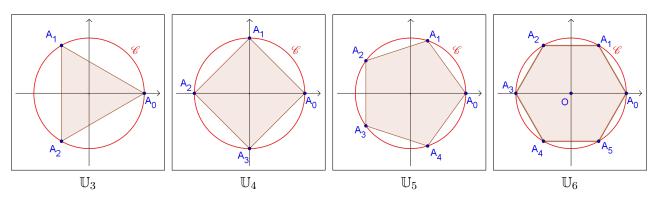
Théorème 2.8

Soit $n \in \mathbb{N}^*$ et posons $\omega = e^{\frac{2i\pi}{n}}$. On a :

$$\sum_{\zeta \in \mathbb{U}_n} \zeta = \sum_{k=0}^{n-1} \omega^k = \begin{cases} 0 & \text{si } n \neq 1 \\ 1 & \text{si } n = 1 \end{cases}$$

Théorème 2.9

Pour $n \ge 3$, les points dont l'affixe est dans \mathbb{U}_n sont les sommets d'un polygone régulier inscrit dans le cercle trigonométrique (cf. figure ci dessous).



Points dont les affixes sont dans \mathbb{U}_n .

2 b) Cas général

Définition 2.10

Soient $a \in \mathbb{C}$ et $n \in \mathbb{N}^*$. On dit que z est une racine n-ième de a si $z^n = a$.

Proposition 2.11

Soit $a \in \mathbb{C}^*$. Si b est une racine n-ième quelconque de a, alors l'ensemble $\mathscr S$ des racines n-ièmes de a est :

$$\mathscr{S} = \{ z \in \mathbb{C}^* \mid z^n = a \} = \{ b\omega \mid \omega \in \mathbb{U}_n \}.$$

Exemple 2.12

Résoudre l'équation, d'inconnue $z \in \mathbb{C}$, $z^4 = 1 + i$.

Proposition 2.13

Soit $a \in \mathbb{C}^*$. Si $n \ge 3$, alors les points dont les affixes sont les solutions de l'équation $z^n = a$ sont les sommets d'un polygone régulier centré en O.

3 Équations du second degré dans $\mathbb C$

Dans cette section, nous allons nous intéresser à la résolution des équations polynomiales du second degré à coefficients complexes. Nous allons, tout d'abord, avoir besoin de calculer les « racines carrées » d'un nombre complexe.

Définition 3.1

Soit $a \in \mathbb{C}$. Une solution de l'équation $z^2 = a$ est appelée **racine carré** de a.

Exemple 3.2

- 1. Déterminer la forme exponentielle du nombre complexe 1+i.
- 2. Résoudre ainsi l'équation d'inconnue $\delta \in \mathbb{C}$: $z^2=1+i$ en exprimant les solutions sous forme exponentielle.
- 3. Résoudre l'équation d'inconnue $\delta \in \mathbb{C}$: $z^2 = 1 + i$ en exprimant les solutions sous forme algébrique.
- 4. Déterminer finalement une formule pour $\cos\left(\frac{\pi}{8}\right)$.

Proposition 3.3

Soit $a \in \mathbb{C}^*$. Le nombre complexe a admet deux exactement deux racines carrées qui sont opposées l'une de l'autre ce qui signifie que si b est une racine de a, l'autre racine de a est -b.

Remarque 3.4

La démonstration précédente est générale mais ne donne pas la méthode lorsqu'on souhaite déterminer les solutions sous forme algébrique : on retiendra donc l'exemple qui précède cette proposition.

Théorème 3.5

Soient $(a,b,c) \in \mathbb{C}^3$ avec $a \neq 0$ et (E) l'équation $az^2 + bz + c = 0$. Le discriminant $\Delta = b^2 - 4ac$ possède deux racines carrées opposées dans \mathbb{C} . Notons les δ et $-\delta$. On a :

i) Si $\Delta \neq 0$, l'équation (E) possède exactement deux solutions (ou racines) :

$$z_1 = \frac{\delta - b}{2a}$$
 et $z_2 = \frac{-\delta - b}{2a}$.

- ii) Si $\Delta = 0$, l'équation (E) possède une unique solution : $z_1 = z_2 = \frac{-b}{2a}$. On dit alors que (E) a une racine double.
- iii) Pour tout $z \in \mathbb{C}$, on a $az^2 + bz + c = a(z z_1)(z z_2)$.

Dans le cas particulier où les coefficients a, b et c sont réels, Δ est alors lui aussi réel.

- i) Si $\Delta > 0$, alors $\pm \delta \in \mathbb{R}$ et les deux racines de (E) sont distinctes et réelles.
- ii) Si $\Delta = 0$, la racine double de (E) est réelle.
- iii) Si $\Delta < 0$, alors $\delta = \pm i \sqrt{-\Delta}$, et les deux racines de (E) sont distinctes et conjuguées.

Exemple 3.6

Résoudre l'équation d'inconnue $z \in \mathbb{C}$:

$$z^2 - (4+i)z + 5 + 5i = 0.$$

On exprimera les solutions sous forme algébrique.

On a enfin le résultat suivant.

Théorème 3.7 (Relations coefficients-racines)

Soient trois complexes a, b, c tels que $a \neq 0$. Quels que soient les complexes α, β on a :

$$\left[\forall z \in \mathbb{C}, \ az^2 + bz + c = a(z - \alpha)(z - \beta)\right] \iff \begin{cases} \alpha + \beta = -\frac{b}{a} \\ \alpha\beta = \frac{c}{a} \end{cases}.$$

Remarque 3.8

Si l'on connait la somme S et le produit P de deux complexes, il suffit donc de résoudre l'équation $z^2 - Sz + P = 0$ pour calculer ceux-ci (pour le prouver il suffit de prendre a = 1 dans l'énoncé précédent).